1/216=6^2x-1

Simple and best practice solution for 1/216=6^2x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/216=6^2x-1 equation:



1/216=6^2x-1
We move all terms to the left:
1/216-(6^2x-1)=0
We get rid of parentheses
-6^2x+1+1/216=0
We multiply all the terms by the denominator
-6^2x*216+1+1*216=0
We add all the numbers together, and all the variables
-6^2x*216+217=0
Wy multiply elements
-1296x^2+217=0
a = -1296; b = 0; c = +217;
Δ = b2-4ac
Δ = 02-4·(-1296)·217
Δ = 1124928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1124928}=\sqrt{5184*217}=\sqrt{5184}*\sqrt{217}=72\sqrt{217}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{217}}{2*-1296}=\frac{0-72\sqrt{217}}{-2592} =-\frac{72\sqrt{217}}{-2592} =-\frac{\sqrt{217}}{-36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{217}}{2*-1296}=\frac{0+72\sqrt{217}}{-2592} =\frac{72\sqrt{217}}{-2592} =\frac{\sqrt{217}}{-36} $

See similar equations:

| 5a-(2a+6)=-3a | | 9x+6=1x+0 | | 4x-21+x-3=180 | | 3t–4=t+10 | | 5(x+1)=4x+0 | | -7x+4+4+2x-3=6-x1-2x | | 9x+3=1x+8 | | 2x+5=5x+5-3x | | 9u=24+3u | | 10(s-4)=111 | | -7x-2=-51 | | -8+12x+7x=12 | | X/10+2x/5=12 | | -4w-32=-107 | | 9x+4=1x+0 | | 9x-90=-243 | | x+66+x+46=180 | | 3(m+1=4m-7 | | 8x=9=7x+1 | | 0=x(0.5+0.6666666666666666x) | | 8(2l+4)=128 | | 2b−1=11 | | 6(2r+4)=4(3r+6) | | 2t-8+6+5t=0 | | -4(3x-2)+12=-20 | | 4(a-10)=12 | | 20d+1=41 | | 0.6x+24=4-0.2x | | 1x+0=9x+8 | | 7)v+93=8 | | 3(2x+5)-x=2x+21 | | 3(3t=9) |

Equations solver categories